Applying Semantic Web Technologies to Matchmaking and
Web Service Descriptions

Amer Al Shaban and Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada

1 Introduction

The recent expansion of representing web services using agents is causing difficulties in
finding specific types of web services. The main reason for these problems is the
employed matchmaking techniques. Most of the existing techniques are based on search
using string comparison, so, if service providers neglect to provide sufficient or
appropriate terms for the matchmaking process, the search techniques will return
incomplete results. This paper addresses the problem of matching requested services to
proper provider agents by making use of OWL (Ontology Web Language) ontologies and
the OWL reasoner RACER. In the following we first describe the used tools, and then
introduce an implemented prototype, where an agent (MatchMaker) was added to an
existing agent framework (DECAF), where the new matchmaker employs OWL-S for
matching requests to available services.

2 Tools

2.1 DECAF

DECAF (Distributed, Environment-Centered Agent Framework) is a toolkit which allows
a well-defined software engineering approach to build multi agent systems. The toolkit
provides a stable platform to design, rapidly develop, and execute intelligent agents to
achieve solutions in complex software systems. DECAF provides the necessary
architectural services of a large-grained intelligent agent communication, planning,
scheduling, execution monitoring, coordination, and eventually learning and self-
diagnosis [1].

DECAF has been used in the provided prototype as the framework for agents, which
takes care of the communication part and the assurance of populating agents without any
conflicts.

2.2 RACER

RACER (Renamed ABox and Concept Expression Reasoner) is a description logic
reasoner for OWL DL that implements a highly optimized tableau calculus for very
expressive description logics. It also offers reasoning services for multiple TBoxes and
for multiple ABoxes encoded as OWL DL knowledge bases [2].

RACER is used as the reasoner for provided OWL ontologies (which will be explained in
the next section), so the seeker agents would have the ability of querying the ontologies
about provided web services.

2.3 Ontologies

The definition of an ontology differs from one context to the next. Generally an ontology
can be considered as a formal description of classes in a domain of discourse (also called
concepts), where classes describe common characteristics of individuals, properties of
individuals specify common features and attributes of a concept slots (also called slots or
roles), and restrictions on slots called facets (also called role restrictions). Ontologies
together with a set of assertions about individuals or instances of classes usually define a
knowledge base. In reality, there is a fine line where an ontology ends and a knowledge
base begins [3]. In general we can say that an ontology is an explicit specification of a
conceptualization where it makes concepts more specific by using other concepts and
roles [4].

Ontologies are used to specify offered web services. If a certain agent is providing a
service, it will specify the service using an ontology format, such as OWL (Ontology
Web Language), when it is registering this service. In this way, the ontology specification
will be the reference for the service when it is being retrieved.

2.4 OWL-S

OWL-S is a OWL-based web service ontology, which supplies web service providers
with a core set of markup language constructs for describing the properties and
capabilities of their web services in unambiguous, computer-interpretable form. The
OWL-S markup of web services will facilitate the automation of web service tasks,
including automated web service discovery, execution, composition and
interoperation [5].

3 Suggested Solution

After briefly mentioning the used tools and the main problem, the suggested solution
(provided in the sequence diagram, see below) is discussed. In general, the presented
solution can be divided into three main steps. An agent providing web services (Provider
Agent), an agent requesting web services (Seeker Agent), and an agent which takes care
of matching the seeker agent to correct provider agents (MatchMaker).

3.1 MatchMaker

In order for an agent to find a certain service from another agent, there should be a third
party which takes care of that specific issue. That third party is called the Matchmaker.
The matchmaker is middle-ware agent that comes with DECAF, which is in charge of
matching requested services to proper provider agents. But the problem is that the
matchmaker’s searching technique is based on string comparison which, as mentioned
before, can cause performance problems and produce incomplete results for seeker
agents. So the main part of the provided solution is to re-implement the matchmaker by
replacing string comparison with reasoning based on ontologies.

The new matchmaker was re-implemented with several new features. The main feature is
having an upper ontology that includes everything related to the different agent domains.
That upper ontology acts as glue which connects all the agents’ domains. Thus, when a
seeker searches for a service, the upper ontology is used as a grounding for

communication and by getting only the related agents. Another feature is the use of a
database to store information about agents (e.g., their names and offered services) instead
of storing it in a text file. The database is used to keeps track of the requests while one is
searching for matching agents.

Seeker Agent Prizvvider Agent MatchMakenMM) MM's RACER Provider's RACER
| | | |
: 1 Adverises p—L :
| |
| |
| _ _Confimsthe | | I
| | advertisement ! I
L Asks for a service - :
1
: ——Sends the Query I
! . Sends the resulls
| = back |
| HEels the nameas of the I
| Agenfrom a DB I
| Ll —
| |
: Checks if the provider has the service— s —
I
| Sendszthe raply
| _ S~ T T T T T T T T T T T T Bl
e] Returns thejagents’ names =~ L [
) and services | [
Communicates | | |
Using OWL-S | |
| |
| |
Feturns the
<~ Faumste__ | |
| |
| |

| answer]
|
|

Sequence diagram illustrating the agent communication.

There are three basic services implemented in the matchmaker. Advertisement, where it
expects two parameters. The first one is a set of concepts, which includes all the related
concepts for that service which occur as leaves in the upper ontology (e.g., if an agent is
providing apartments, and the upper ontology includes housing as a leaf, then the agent
will provide housing as a concept for that service), and the URI of an Ontology which
will be used in the protocol implementing the agent communication. The second service
is asking, which basically addresses the search part in the matchmaker. This service is
called by the seeker agents. It expects two parameters, ConceptBasedQuery which is a
general query that will be used as a filter on the upper ontology at the matchmaker’s side
to get all the related provider agents, and RQL (Racer Query Language) which describes
a more specific query that will be used at the provider agent’s side to check whether the
filtered agents truly provide the requested service. The third service is deeper; this service
in particular will never be called by any agent but the matchmaker itself. It takes the list
of filtered agents form the asking service, and sends the RQL query to each of them and
gets the answer from them. Eventually it returns the matched agents’ names with their
offered services to the seeker agent.

3.2 Provider Agent

The provider agent represents a web service, and makes it possible for any seeker agent
to use that web service. It was implemented with two main features, deeperSearch and
activateService. The deeperSearch service is the one which deals with deeper service
from the matchmaker side. It takes the RQL query, poses it to RACER by referring to the
corresponding ontology. It replies back with the service name if available, or with none if
no matching services could be found on the basis of this ontology. The activateService is
used by the seeker agent after receiving the results from the matchmaker. This service
makes use of OWL-S by representing the existing web service in an ontology format, so
that a seeker agent can retrieve the parameter profile of the service and executes the web
service call. Using OWL-S makes the representation of web services more flexible and
dynamic because the interface of an agent might change at almost any time. The service
description is compatible with WSDL and agents can adapt to changed services at
runtime without the need to code of any of the involved agents. The OWL-S description
specifies a communication protocol between the seeker agent and provider agent for
executing the web services successfully.

3.3 Seeker Agent

The seeker agent basically communicates first with the matchmaker, retrieves the names
of the matching provider agents, and then communicates with the provider agents to
execute the web service using OWL-S.

4 Conclusion

So far there does not exist a convenient language or representation for building agents
that depend on ontologies. All of the previous work done in those fields show that there
might be a bright future for such an approach. In this short paper, a brief description of
the integrated tools was presented. Moreover, a new way to integrate ontologies with
agents in DECAF has been suggested with the ability of reasoning the ontologies using
RACER. The described prototype has been implemented in Java using the mentioned
tools. We tested it using a selling/buying scenario with various configurations of agents.
Hopefully this prototype can be a good start point for switching to the emerging semantic
web and using ontologies with mobile agents in a wider application area.

References

[1] John R. Graham, Keith S. Decker, Michael Mersic, DECAF - A Flexible Multi Agent
System Architecture, Autonomous Agents and Multi-Agent Systems. 2003.

[2] Volker Haarslev, Ralf Méller, Description of the RACER System and its
Applications, Proceedings of International Workshop on Description Logics (DL-2001),
Stanford, USA, 1.-3. August 2001.

[3] Thomas R. Gruber, A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 1993.

[4] Holger Knublauch, Mark A. Musen, Natasha F. Noy. Creating Semantic Web (OWL)
Ontologies with Protégé. International Semantic Web Conference, Sanibel Island,
Florida, USA, October 20-23, 2003.

[5] OWL-S (OWL Web Service) 1.0 Release http://www.daml.org/services/owl-s/1.0/

